Reciprocal congenic lines for a major stroke QTL on rat chromosome 1.
نویسندگان
چکیده
We previously identified a quantitative trait locus (QTL) for stroke proneness between the kallikrein (Klk) and Mt1pa markers on rat chromosome 1. To gain functional insights, we constructed congenic strains by introgressing either the whole or selected chromosomal segments from the stroke-prone (SHRsp) onto the stroke-resistant (SHRsr) spontaneously hypertensive rat genome and vice versa. The phenotype was the latency to develop stroke under a Japanese high-salt, low-potassium diet for 3 mo [known as Japanese diet (JD)]. Blood pressure (BP) was measured by tail cuff throughout the experiment. Urinary protein excretion was monitored in all lines under JD. The SHRsp-derived lines carrying the SHRsr allele, and particularly the D1Rat134-Mt1pa chromosomal segment, had a significant delay of stroke occurrence and improved survival compared with SHRsp (P < 0.001). On the other hand, a significant occurrence of stroke events (20%) was detected in the reciprocal lines by the end of the 3-mo treatment with JD (P = 0.003). The stroke phenotype was also associated with increased proteinuria. Our results underscore the functional importance of the Chr 1 stroke QTL. Furthermore, they underscore the utility of stroke/congenic lines in dissecting the genetics of stroke.
منابع مشابه
Congenic substitution mapping excludes Sa as a candidate gene locus for a blood pressure quantitative trait locus on rat chromosome 1.
Previously, linkage analysis in several experimental crosses between hypertensive rat strains and their contrasting reference strains have identified a major quantitative trait locus (QTL) for blood pressure on rat chromosome 1 (Chr 1) spanning the Sa gene locus. In this study, we report the further dissection of this Chr 1 blood pressure QTL with congenic substitution mapping. To address wheth...
متن کاملReciprocal rat chromosome 2 congenic strains reveal contrasting blood pressure and heart rate QTL.
Evidence exists implying multiple blood pressure quantitative trait loci (QTL) on rat chromosome 2. To examine this possibility, four congenic strains and nine substrains were developed with varying size chromosome segments introgressed from the spontaneously hypertensive rat (SHR/lj) and normotensive Wistar-Kyoto rat (WKY/lj) onto the reciprocal genetic background. Cardiovascular phenotyping w...
متن کاملSuccessful isolation of a rat chromosome 1 blood pressure quantitative trait locus in reciprocal congenic strains.
Linkage analyses in experimental crosses of hypertensive and normotensive rats have strongly suggested the presence of a quantitative trait locus (QTL) influencing blood pressure on rat chromosome 1, at or near the Sa gene. To confirm the presence of such a locus and move toward identification of the causative gene, we have developed, through targeted breeding over 10 generations using an Sa ge...
متن کاملLocalization of a blood pressure QTL on rat chromosome 1 using Dahl rat congenic strains.
We previously reported that markers on rat chromosome 1 are genetically linked to blood pressure in an F(2) population derived from Dahl salt hypertension-sensitive (S) and Lewis (LEW) rats. Because there was evidence for more than one blood pressure quantitative trait locus (QTL) on chromosome 1, an initial congenic strain introgressing a large 118-centimorgan (cM) segment of LEW chromosome 1 ...
متن کاملIsolation of a chromosome 1 region affecting blood pressure and vascular disease traits in the stroke-prone rat model.
Recently, a genome-wide screen has shown a major quantitative trait locus (QTL) for a stroke-associated phenotype on rat chromosome 1 (RNO1) independent of QTL for blood pressure (BP) in the stroke-prone spontaneously hypertensive rat (SHRSP) of a Heidelberg colony. However, it remains to be elucidated whether these observations reflect the existence of different genes predisposing to each of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2006